До появления теорий Юнга и ЛапласаМатериалы по медицине / История изучения капиллярных и поверхностных сил / До появления теорий Юнга и ЛапласаСтраница 1
Первооткрывателем капиллярных явлений считается Леонардо да Винчи (Leonardo da Vinci). Однако первые аккуратные наблюдения капиллярных явлений на трубках и стеклянных пластинках были проделаны Фрэнсисом Хоксби в 1709 году [1]).
То, что вещество не является бесконечно делимым и имеет атомную или молекулярную структуру, было рабочей гипотезой для большинства ученых начиная с XVIII в. К концу XIX в., когда группа физиков, сторонников позитивистской философии, указала, каким непрямым являлось доказательство существования атомов, на их заявление последовала лишь незначительная реакция, и в итоге их возражения не были опровергнуты до начала этого столетия. Если в ретроспективе к сомнения кажутся нам неосновательными, мы должны помнить, что почти все, кто тогда верил в существование атомов, верили также твердо в материальное существование электромагнитного эфира, а в первой половине XIX в. — часто и теплорода. Тем не менее ученые, внесшие наибольший вклад в теорию газов и жидкостей, использовали предположение (обычно в явной форме) о дискретной структуре вещества. Элементарные частицы материи называли атомами, или молекулами (например, Лаплас), или просто частицами (Юнг), но мы будем следовать современным понятиям и употреблять слово “молекула” для элементарных частиц, составляющих газ, жидкость или твердое тело.
В начале XIX в. силы, которые могли бы существовать между молекулами, были так же не ясны, как и сами частицы. Единственной силой, в отношении которой не было сомнения, была ньютоновская гравитация. Она действует между небесными телами и, очевидно, между одним таким телом (Землей) и другим (например, яблоком), имеющим лабораторную массу; Кавендиш незадолго до этого показал, что она действует и между двумя лабораторными массами, а потому предполагалось, что она действует также между молекулами. В ранних работах по жидкостям можно найти массы молекул и плотности масс, входящие в уравнения, в которых мы теперь должны писать числа молекул и плотности чисел молекул. В чистой жидкости все молекулы имеют одинаковую массу, так что это различие не играет роли. Но еще до 1800 г. было ясно, что понятия о гравитационных силах недостаточно для объяснения капиллярных явлений и других свойств жидкостей. Поднятие жидкости в стеклянной трубке не зависит от толщины стекла (по данным Хоксби[1][D&L1] , 1709 г.), и, таким образом, только силы со стороны молекул в поверхностном слое стекла действуют на молекулы в жидкости. Гравитационные же силы лишь обратно пропорциональны квадрату расстояния и, как было известно, действуют свободно через промежуточное вещество.
Природа межмолекулярных сил, отличных от сил тяготения, была весьма неясной, но в измышлениях не было недостатка. Священник-иезуит Роджер Боскович (Ruggero Giuseppe Boscovich) полагал, что молекулы отталкиваются на очень малых расстояниях, притягиваются при несколько больших расстояниях и затем по мере увеличения расстояния демонстрируют попеременно отталкивание и притяжение со все уменьшающейся величиной. Его идеи в следующем столетии оказали влияние как на Фарадея, так и на Кельвина, но были слишком сложными, чтобы оказаться непосредственно полезными для тех, кто занимался теорией капиллярности. Последние благоразумно довольствовались простыми гипотезами.
Куинк (G.H. Quincke) поставил эксперименты по определению наибольшего расстояния, на котором действие межмолекулярных сил ощутимо. Он получил, что для различных веществ эти расстояния составляют ~ 1/20000 часть миллиметра, т.е. ~ 5·10–6см (данные приведены согласно [2]).
Джеймс Джурин показал, что высота, на которую поднимается жидкость, определяется верхней частью трубки, которая находится над жидкостью, и не зависит от формы нижней части трубки. Он считал, что поднятие жидкости происходит благодаря притяжению со стороны внутренней цилиндрической поверхности трубки, к которой примыкает верхняя поверхность жидкости. Исходя из этого, он показал, что поднятие жидкости в трубках из одинакового вещества обратно пропорционально их внутреннему радиусу [3].
Клеро был одним из первых, кто показал необходимость принятия во внимание притяжения между частицами самой жидкости для объяснения капиллярных явлений [4]. Он, однако, не признавал, что расстояния, на которых действуют эти силы, неощутимо малы.
В 1751 г. фон Сегнер ввел важную идею поверхностного натяжения по аналогии с механическим натяжением мембраны в теории упругости [5]. Сегодня понятие поверхностного натяжения является заурядным, с него обычно начинают изучение капиллярных сил и поверхностных явлений в учебных заведениях.
Эта идея стала ключевой в дальнейшем развитии теории. Собственно, тем самым был сделан первый шаг в изучении явления — введено феноменологическое понятие, описывающее макроскопическое поведение системы. Второй шаг — это вывод феноменологических понятий и вычисление значений величин, исходя из молекулярной теории. Этот шаг имеет огромную важность, так как является проверкой правильности той или иной молекулярной теории.
Смотрите также
Желчно-каменная болезнь и ее лечение
Желчно-каменная болезнь
(.ЖКБ) — заболевание, обусловленное образованием камней в желчном пузыре или
желчных протоках, а также возможным нарушением
проходимости протоков
вследствие закупор ...
Экспериментальная часть
Было изучено влияние агрессивных сред на разрушение яичной скорлупы, а
также защитных свойств наиболее популярных зубных паст.
Поводом для проведения эксперимента послужила серия рекламных роликов ...
Баттерфляй
Баттерфляй характеризуется одновременными симметричными
движениями рук и ног, а также волнообразными движениями туловища, которые помогают
движениям рук и усиливают работу ног. Отдельные элемен ...